
Entangled photons on demand: Erasing which-path information with sidebands

W. A. Coish and J. M. Gambetta
Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo,

Waterloo, Ontario, Canada N2L 3G1
�Received 13 November 2009; published 8 December 2009�

The biexciton cascade in a quantum dot can be used to generate entangled-photon pairs rapidly and deter-
ministically �on demand�. However, due to a large fine-structure splitting between intermediate exciton energy
levels, which-path information encoded in the frequencies of emitted photon pairs leads to a small degree of
entanglement. Here we show that this information can be efficiently erased by modulating the exciton and
biexciton energy levels, giving rise to additional decay paths through sidebands. The resulting degree of
entanglement is substantial and can be made maximal through spectral filtering, with only a nominal reduction
in collection efficiency.
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A fast and deterministic source of highly entangled pho-
ton pairs is a central requirement in schemes for
measurement-based quantum computing1 and long-ranged
quantum communication.2 One of the most promising meth-
ods for entangled-photon pair generation makes use of a
biexciton cascade in semiconductor quantum dots.3 These
systems offer the possibility of rapid and deterministic gen-
eration of entangled photon pairs, in contrast to current
schemes based on parametric down conversion, which are
inherently stochastic and have pair-generation rates limited
by the creation of multiple pairs at high pump power.

Significant progress has been made in recent years toward
the realization of an efficient source of on-demand
entangled-photon pairs.4–6 However, the achievable degree
of entanglement �or efficiency of pair collection� is severely
limited by the electron-hole exchange interaction, giving rise
to an intrinsic fine-structure splitting �FSS� separating the
intermediate exciton states.4,5,7–9 Several methods have been
proposed and used to eliminate the FSS, including applied dc
electric10–12 and magnetic fields,4 strain,13 the ac Stark
effect,14,15 and strong coupling to a cavity.8,16 Additional
schemes have been proposed and demonstrated that give en-
tangled pairs in spite of the FSS, including postselection
based on frequency,5,17 as well as schemes involving “time
reordering” of emitted photons.9,18,20 A further possibility is
to anneal self-assembled dots after growth to reduce the
FSS.21 There has been some success in creating highly en-
tangled photon pairs using dots that are specially selected for
their small FSS,6 although this method requires the selection
of one out of many dots in an ensemble. While each of these
methods shows promise or a measured degree of success,
various complications have made it difficult to generically
create entangled photon pairs with both a high degree of
entanglement, and a high efficiency of photon pair genera-
tion for typical quantum dots, where the FSS is large com-
pared to the radiative linewidth.

Here, we introduce an alternative scheme for erasing
“which-path” information in a biexciton cascade. This
scheme is conceptually and technologically simple, avoids
pitfalls associated with methods using large dc electric fields,
and works for typical quantum dots, with large associated
FSS. In this scheme, sidebands can be generated through
modulation of the biexciton and exciton energy levels. By

choosing the modulation frequency to coincide with the FSS,
and by appropriately tuning the modulation amplitude, it is
possible to recover a significant degree of entanglement for
emitted photon pairs.

The canonical biexciton cascade is shown schematically
in Fig. 1. The two intermediate bright exciton states couple
to two orthogonal linear polarizations. Within the rotating-
wave approximation, the dot-light coupled system is then
described by the Hamiltonian �we set �=1�,

H = H0 + �
k�

gk��X�,2Xak�
† + fk��0,X�

ak�
† + H.c., �1�

where �i,j = �i��j� describes an excitation on the dot, the
noninteracting Hamiltonian is H0=� jEj�j��j�+�k��kak�

† ak�,
j= �g ,Xh ,Xv ,2X�, and �ij =Ei−Ej. Here, ak�

† creates a photon
with wavevector k and linear polarization �= �v,h� having
frequency �k. The state �g� describes the empty dot �without
excitons�, �2X� describes the �nondegenerate� biexciton
ground state, and �Xh,v� denote the two bright exciton states,
separated in energy by the FSS: EXv

−EXh
=��.

The dot is initialized to the biexciton state with the state
of the photon field given by vacuum ����0��= �2X� � �0��.
This state evolves coherently under the action of the Hamil-
tonian 	Eq. �1�
, giving rise to the sequential spontaneous
emission of two photons. The state of the coupled dot-photon
system can be calculated within a Wigner-Weisskopf

FIG. 1. �Color online� Energy levels and decay rates for the
biexciton cascade. The exciton states �Xh� ��Xv�� couple only to
horizontally �vertically� polarized light. Decay from the biexciton
state �2X� to the ground state �g� results in the emission of two
photons, which may be entangled in polarization.
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approximation5,9,22 when ��X�,0−�2X,X�
�	
�,23 where

�= �Xh ,Xv ,2Xh,2Xv�, giving the long-time limit

������ = �g� � �
kq�

ckq�ak�
† aq�

† �0� . �2�

The resulting two-photon state is then completely character-
ized by the coefficients ckq�, which have been reported pre-
viously in a similar context.5,9,17 We define the conditional
postselected state of the two photons in the polarization basis
by =����������������� with matrix elements

��� = Tr�F����������������/� , �3�

F��� =
1

2�
kq

�k�qaq��
† ak��

† �0��0�ak�aq�. �4�

Here, � is a normalization chosen to enforce Tr =1. The
coefficients �k simultaneously characterize imperfections in
photon detection and postselection due to spectral filtering
��k=1 ∀k if all emitted photons are detected perfectly�. The
form of Eq. �4� implicitly assumes that the photon detector
bandwidth due to a finite detection time �d is smaller than the
relevant features of the biexciton cascade. In particular, here
we assume �d�1 /��. In the opposite limit, a finite FSS
would not limit the entanglement of emitted photons.24

The degree of bipartite entanglement in polarization for
the resulting two-photon state can be characterized by any
entanglement measure. Here, we choose the generalized con-
currence C 25 which reaches C=1 for maximally entangled
states and is C=0 for separable states. For the biexciton cas-
cade, the concurrence is given simply in terms of hv 	see Eq.
�5�, below
. The maximum efficiency of collected photon
pairs is given by the normalization �,17

C = 2�hv�; � = �
�

Tr�F��������������� . �5�

The concurrence is calculated by converting the wavevec-
tor sums in Eq. �3� to energy integrals and performing the
resulting integrals in the complex plane. For perfect detec-
tion ��k=1 ∀k�, the concurrence and efficiency evaluate to

C =
�
Xh


Xv

2Xh
2Xv


2X
���2 + 
X

2
� �X�2X


X

����
; � = 1. �6�

Here, �2X=�
2Xh
2Xv /
2X and �X=�
Xh

Xv

/
X give relative
asymmetries in the decay rates �in the following analysis, we
will assume �X=�2X=1, a condition approximately realized
in experiments4,5�. The average exciton and biexciton decay
rates are 
X= �1 /2���
X�

and 
2X= �1 /2���
2X�
, respec-

tively, with individual decay rates �see Fig. 1� given by Fer-
mi’s golden rule: 
X�

=2��q�fq��2���q−�X�,0� , 
2X�

=2��q�gq��2���q−�2X,X�
�. When �X=�2X=1, Eq. �6� recov-

ers the result reported in Refs. 9 and 17. The concurrence is
small in the ratio 
X / ����. This result reflects the fact that the
two decay paths given in Fig. 1 are distinguishable in fre-
quency whenever the radiative linewidth is smaller than the
frequency difference of emitted photons. The technology re-
quired to apply local electric fields to self-assembled dots is
now well developed, so it is natural to attempt to reduce ��

using a dc field.11,18 An electric field couples to the exciton
polarizability, and can be used to reduce �� by rendering the
two-electron wave function more symmetric. However, a
sufficiently strong electric field will simultaneously separate
the electron and hole single-particle wave functions, decreas-
ing the radiative linewidth: 
X� �d3r�e�r���h�r��2, making a
reduction in the ratio C�
X / ���� problematic.

In the remainder of this Rapid Communication, we
present a method for removing which-path information in a
biexciton cascade, which yields a finite concurrence in the
limit 
X / ����→0. We now introduce an additional time-
dependent ac electric �or strain� field, which modulates the
exciton and biexciton levels with a periodic drive. In the
presence of the ac field, sidebands develop at multiples of the
modulation frequency �quasienergy� �. By tuning the driving
frequency to the FSS ��=���, we can “erase” the which-
path information by introducing additional decay paths �see
Fig. 2�. We note that these additional decay pathways do not
lead to distinguishability of photon pairs emitted at different
times, which may be important for schemes involving joint
measurements. Provided the decay rates and frequencies are
fixed, every emitted photon pair will be described by an
identical wavepacket, including components from several
frequencies.

In general, we account for both the modulation of the
energy levels with the replacement Ej→Ej +�Ej cos��t� and
the modulation of the oscillator strengths, with the replace-
ments gk�→G�t�gk� and fk�→F�t�fk�, in Eq. �1�. The spon-
taneous emission rates are also modified due to the modula-

tion: 
X,2X→ 
̃X,2X. It is convenient to go to a generalized

rotating frame: ��̃�=U�t����, with the time-dependent unitary

U�t�=ei0
t dt�H0�t��. The Hamiltonian in this frame is

H̃�t� = �
k�

g̃k��t��X�,2Xak�
† + f̃k��t��0,X�

ak�
† + H.c., �7�

where

g̃k��t� = �
nm

gk�GmJn��2X�
�e−i��2X,X�

−�k+	n−m
��t,

FIG. 2. �Color online� Decay cascade and emission spectrum
including resolved sidebands from the modulation of the levels and
independent spectral filtering for processes A and B.
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f̃k��t� = �
nm

fk�FmJn��X�
�e−i��X�,0−�k+	n−m
��t, �8�

with �2X�
=�2X−�X�

and � j =�Ej /�. Here we have exploited
the fact that the modulation is periodic, allowing G�t� and
F�t� to be written in terms of their discrete Fourier trans-
forms: G�t�=�m=−�

� Gmeim�t , F�t�=�m=−�
� Fmeim�t. We have

further made use of the Jacobi-Anger expansion:

e−i0
t dt��E cos��t��=�n=−�

� Jn��E /��e−in�t, familiar from the
theory of photon-assisted tunneling.26 With the new Hamil-
tonian 	Eq. �7�
 in hand, it is a straightforward but tedious
exercise to repeat the steps used to arrive at the concurrence.
However, due to the presence of sidebands, it is necessary to
introduce the additional condition ����	
� �the resolved-
sideband limit� for the simple Wigner-Weisskopf analysis to
be valid. Since this is precisely our regime of interest, no
harm is done in making this approximation.

We now give the most relevant specific examples to illus-
trate the method. First, we consider the case without spectral
filtering ��k=1� and we set �=��. Remarkably, to leading
order in 
� / ����, the contributions from all sidebands can be
summed analytically. If the dc component of the oscillator
strengths dominates �i.e., F�t�=G�t�=1�, we find the decay

rates are unchanged 
̃�=
�, and the concurrence is

C = J1
2��̃� + O� 
�

��
� ; � = 1, �9�

where �̃=�Xh
−�Xv

describes the relative modulation ampli-
tude for the two intermediate exciton states. For this case, the
concurrence reaches a maximum C�0.3 when �̃�2, de-
scribing the situation when the FSS approximately vanishes
at the peak of the modulation. Although C�1 in this case,
several entangled pairs with any finite concurrence can be
used to create a single maximally entangled pair through
entanglement purification. However, purification comes at
the cost of additional resources. For the current case, and
with C=0.3, we find that the one-way hashing protocol27

gives a yield of perfect Bell pairs to imperfect pairs of
�1 /15.

Fortunately, it is possible to substantially boost the con-
currence in this scheme �to 1 in the ideal case�, with a larger
efficiency through spectral filtering. Spectral filtering has
been demonstrated previously without level modulation, but
has suffered from a relatively low efficiency, limited by the
small ratio 
 j / ����.5,17 In the presence of sidebands, it is
possible to choose the spectral filter advantageously to col-
lect a large fraction of the photons where two sidebands
overlap. Using the filtering scheme shown in Fig. 2, where
the photons passing through the windows labeled “A” and
“B” are collected independently with width w satisfying 
�

�w���, leads to

C =
2J1

2���J0
2���

�
+ O� 
�

��
� ; � = J0

4��� + J1
4��� , �10�

where we have chosen �Xh
=�Xv

=� and �2X=2� to maxi-
mize the concurrence.28 The concurrence in Eq. �10� reaches
a maximum of C=1 when ��1.4, leading to a collection
efficiency of ��0.18 �see Fig. 3; note that C is only sensi-

tive to large fluctuations �� of order 1�. Thus, at the expense
of a factor of �5 reduction in the efficiency of collected
entangled pairs, it is still possible to generate maximally en-
tangled photons with this method, even in the limit

� / ����→0, and without resorting to entanglement purifica-
tion.

We have made several implicit assumptions throughout
this analysis. In particular, we assume that there is a reason-
able mechanism for modulating the exciton and biexciton
levels at GHz frequencies. This can be achieved, e.g., by
coupling the dots to the electric field from a microwave-
resonator stripline,29 through capacitive coupling to a
potential-biased nanomechanical resonator, or by coupling to
the strain field due to surface acoustic waves.30 Each of these
technologies has been demonstrated in other contexts. We
estimate the electric-field amplitude required to generate
maximally entangled photons is typically E���� /D
�103 V /m, where ����10 �eV and D�e�10 nm is
the typical exciton dipole moment �dc fields that are larger
by a factor of �102 have been achieved in gated dots12�. An
ac electric field may induce photon-assisted tunneling, but

this effect is strongly suppressed whenever 
dl / 
̃X�1,
where 
dl gives the dot-lead electron-tunneling rate. Fluctua-
tions of the intermediate exciton states during the biexciton
cascade can lead to dephasing and a reduced concurrence.
However, if these fluctuations arise from a common bath
�e.g., phonons�, this is not a fundamental problem in our
scheme, since dephasing can be neglected altogether when
the two intermediate exciton states are made to couple
symmetrically.19 This is an advantage of the present scheme
over, e.g., time reordering, which is sensitive to global noise.

We have presented an alternative route to achieving
highly entangled photon pairs rapidly and on demand. Our
suggested method works with typical quantum dots, having a
large exciton FSS, and relies on proven technology for local
gating of quantum dots, without the explicit requirements of
additional laser fields or strong coupling to a cavity. While
other recent proposals for time-reordering schemes9,20 sug-
gest that a larger concurrence can be achieved for ‘on-
demand’ photons in the presence of a large FSS, we believe
the sideband eraser is a promising alternative. In contrast to
time reordering, the sideband eraser requires no large dc
electric field to cancel the biexciton binding energy. Further,

0

0.5

1

0 1 2
αα

C

η

FIG. 3. �Color online� Concurrence and efficiency using the
optimal filtering method when �X=�2X=1, �Xh

=�Xv
=�, and

�2X=2�. In the optimal case, where �X�1.44, we have C=1,
��0.18.
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maximal entanglement is only achieved in the time-
reordering method with the application of a potentially com-
plicated unitary to the photon wavepackets.

Finally, we note that the modulation frequencies involved
are typically in the microwave ��10 GHz� range, and so we
expect direct extensions of this work to allow for an interface
between microwave-frequency circuit QED or nanoelectro-
mechanical systems and optical-frequency photons.
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